H(t)=-16(t^2)+16t+480

Simple and best practice solution for H(t)=-16(t^2)+16t+480 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16(t^2)+16t+480 equation:



(H)=-16(H^2)+16H+480
We move all terms to the left:
(H)-(-16(H^2)+16H+480)=0
determiningTheFunctionDomain -(-16H^2+16H+480)+H=0
We get rid of parentheses
16H^2-16H+H-480=0
We add all the numbers together, and all the variables
16H^2-15H-480=0
a = 16; b = -15; c = -480;
Δ = b2-4ac
Δ = -152-4·16·(-480)
Δ = 30945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{30945}}{2*16}=\frac{15-\sqrt{30945}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{30945}}{2*16}=\frac{15+\sqrt{30945}}{32} $

See similar equations:

| s+227=-681 | | 6x=33-8 | | 5(20)=x | | 12c=888 | | 5x-7=2x+3x-11 | | 1/3(2x-2)=10 | | Y=3.6x+28 | | 9x-38=7x+46 | | n-(-5)=-2 | | p+76=92 | | 11x+24=8x+93 | | 7-d+5d=9 | | -15=s/5 | | 3x-3=80 | | d-26=4 | | 9(x-12)=6(x+9) | | 1/20+3/20+2/20+9/20+x=100 | | 3z-3=80 | | 10(x-4)=6(x+8) | | 3x+37-10=27 | | 8(x-5)=3(x+15) | | 8r-10=-2r-20 | | 37+x=54 | | 2(3k-5)=5-2k | | 13)x-45=65 | | 4b−10=−50 | | 5x+25+4x-50=2x+75+2x+130 | | -90=-5b | | b-31=19 | | 4(2x+6)+6(2x+5)+4=20x+58 | | -4p=56 | | x-+43=90 |

Equations solver categories